
Using Spatial Techniques to Decrease Message Passing in a Distributed VE System

Olof Hagsand� Rodger Leay Mårten Stenius *

Abstract

In an attempt to reduce the communication costs in a shared dis-
tributed virtual environment (VE) system with a large number of
participants, we have explored the use of spatial interaction tech-
niques. In particular, we have experimented with the notion of an
area of interest (AOI) which is dynamically established based on
the spatial proximity of participants in the shared space.

The work presented here describes an effort to integrate an
enhanced aura-based spatial interaction model within the DIVE
distributed Virtual Environment system and use this to reduce the
overall communication load in the system. By associating light-
weight communication groups to AOIs (area of interest), we show
how messages are distributed to smaller peer groups, so that overall
message passing is decreased. A multi-user application scenario is
implemented as a case study. Real experiments and measurements
with the current DIVE system using the scenario were made to
validate the interaction model and its implementation.

This work was performed as a joint research effort between
Sony CSL and SICS as part of the Wide Area Virtual Environment
(WAVE) project.

Keywords: distributed virtual environments, 3D, multi-
cast, VRML

1 Introduction

Multi-user, distributed VE systems are currently being designed
and implemented that support large numbers of participants simul-
taneously connected to the global Internet. Such systems have
the potential to offer an attractive infrastructure for a variety of
collaboration applications including, traditional CSCW, multi-user

�Swedish Institute of Computer Science, Box 1263, S-164 28 KISTA, SWEDEN,
email:olof@sics.se, mst@sics.se

ySony Computer Science Lab. Inc. Tokyo, Japan, email: rodger@csl.sony.co.jp

gaming, and multi-user commerce applications. However, to gain
wide spread acceptance within a non specialized community, the
performance of such systems must be acceptable to general users[2].

At the gross level, the performance of such shared 3D virtual
environments is based on two key aspects; the graphics perfor-
mance available to render the 3D scene, and the communications
performance required to maintain the shared scene and associated
interaction information.

The cost of rendering complex 3D scenes with a large number
of lines and polygons in real-time, includes 3D coordinate transfor-
mations, hidden surface removal, texture mapping, etc. However,
rendering optimization, dedicated graphics hardware, level-of de-
tails (LODs), etc, can all be applied to single user systems which
are essentially a “standard” 3D rendering problem.

In a distributed VE system, although rendering is a significant
problem, the most intractable performance problem derives from
the communication cost needed to maintain consistency between
peers.

1.1 A scalable infrastructure

A naive and basic infrastructure for a shared 3D world is simple;
it consists of a database of objects that exist in the world, a set
of tools to populate that database and a set of devices that display
the contents of the database. The display device doubles as an
input device and allows users to navigate through the world and to
interact with other users and objects in the world. Updates to the
world database by individual users are sent to the database which
updates its internal model and informs other users of the changes.
To achieve this, it requires some form of communication that will
allow the display devices to access the database and to propagate
user input to the database.

However, because we wish the system to scale, the use of a
single shared database and a client-server model is not acceptable.
Rather we adopt a peer to peer approach based on a replicated
database. Each peer in the system holds a replicated copy of the
“world” database and any changes to one copy have to result in
updates to all other copies of the database.

1.2 Consistency in a distributed VE

The fundamental model presented by a distributed VE platform is
one of a shared 3D space. Such a space,because it is shared, must be
seen “consistently” by all users of that space. A system can provide
different levels of consistency ranging from a strict interpretation
to best effort.

In a strict interpretation, any actions that occur in the shared
space must be propagated to all participants in that space, and

Supplemental material for this paper can be found in the
 papers/hagsand
directory on the CD-ROM.

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

conflicts between user actions are either avoided, or resolved. Fur-
thermore, actions in the space maintain their causal relationship so
that a user can make sense of a “happened before” and “happens
after” relationship.

Obviously maintaining the consistency of the replicated database
is a complicated task and one that requires significant exchange of
information between peers. The choice of algorithm is crucial to
the amount of message passing needed to reach consistency. Any
distributed consistency algorithm has two major concerns:

� Membership: The membership of the consistency group, i.e,
who is taking part in the consistency algorithm is crucial
to performance. Any mechanism that reduces the number
of participants in the consistency group directly reduces the
number of messages that must be exchanged.

� Consistency guarantee: Once membership has been decided,
the next issue is what model of consistency is used by the
consistency algorithms. There has been much work in the
research community addressing the issue of distributed con-
sistency in more traditional data applications with a goal of
reducing the cost of the algorithms. This work has concen-
trated on relaxing the degree of consistency either in a tempo-
ral domain[7, 12], or in a data value domain[19]. As part of
the WAVE project we are addressing the issue of consistency
in large VE’s, and in particular looking at weak and adaptive
consistency based on group communications [13, 14].

In this paper we concentrate on the first of these issues, defining
which participants must take part in any consistency algorithm. As
mentioned above, the issue of membership is key to performance.
If it is possible to find a mechanism or model that minimizes the
number of participants in any given consistency decision, then we
automatically reduce the communications overhead of the consis-
tency algorithm.

Our approach has been to use group communications to support
a spatial model based on the spatial domain that we target, shared
3D scenes. This feature is only present in shared 3D environments
which are primarily concernedwith supporting a notion of 3D space
that models, to some extent, physical space, to allow us to reduce
the participants in any consistency decision.

Assuming a notion of strict consistency between peers in the 3D
virtual environment, then these peers must exchange information
to ensure consistency of their spatial location and their interactions
with other entities in the VE. As the number of users increase, the
processing of incoming packets, and the operations associated with
processing the incoming information, increases. If every peer emits
an invariant rate of information, and network-supported multicast
is used, the traffic and processing cost increases linearly with the
number of peers. This is in agreement with our experiences with
our experience with the DIVE system.

1.3 Spatial areas of interest

In previous experiments with the DIVE system we have observed
that participants form sub-groups where activities occur in clusters
or peer-to-peer within the global session. This observation can be
exploited to decrease overall message passing if one can deliver
packets only to the recipients they are intended for, i.e. those within
the sub-group. In this way, the amount of global traffic is limited,
and the number of incoming messages to each user is reduced.

Using the three dimensions of space is a well-known approach
to partition VEs into several more or less disjoint areas of interests
(AOIs). Static geographical regions are used in applications based
on natural terrains, such as in DIS based systems[1].

A different approach uses intersecting volumes to model inter-
action between participants, so called spatial interaction models[4].
The simplest models use three-dimensional volumes, auras, to de-
scribe the spatial extent of an AOI. When two auras intersect, this
is seen as an indication of mutual interest and thus a potential for
the exchange of information.

The model goes further by defining two notions, focus and
nimbus, to represent the degree of interest users have in each other.
The focus represents the degree of interest a user brings to bear
on another. The nimbus represents the degree of attention a user
pays to another. The combinations of the focus and nimbus of two
interacting users defines their level, or degree of interaction.

It is this model that we seek to use to drive our group com-
munication mechanism and to reduce the number of participants in
any consistency algorithm. In the rest of this paper we detail how
we exploit this model and how we map it to group communication
model.

In Section 2 the spatial model is presented; Section 3 presents
light-weight groups in DIVE; Section 4 shows how the spatial model
was implemented in DIVE using light-weight groups; Section 5
introduces the application scenario; and Section 6 describes the
results of the experiments. In the next section, we briefly overview
related work not already discussed in the main body of the text and
finally, in Section 8 we conclude and discuss future plans.

2 Using auras to reduce communication

Our system model consists of a replicated database containing in-
formation about all objects in the shared virtual world. Each world
defines a virtual space captured using a 3D co-ordinate system.
Each object specifies a dynamic aura that represents the portion of
the virtual space in which it is interested relative to itself. A sep-
arate unit, an Aura Manager (AM) constantly monitors objects
as they move around the shared world and informs an object when
other objects collide with its aura. The information from the AM
to the object consists of a communications end point that allows
a local replica for the remote object to be constructed locally by
communicating with the remote object.

To ensure that the AM does not become a bottleneck in large
scale systems we define a hierarchy of AM’s with a unique root,
which also serves as a name server. This model allows us to share
load by assigning AM’s to unique areas within the shared scene.

Figure 1 shows a simple two level AM hierarchy with each AM
responsible for a single quadrant of the shared scene. The master
AM (MAM) is used to handle AM handover as an object moves
from one quadrant, and hence one AM, to another. Obviously, this
hierarchy may be extended indefinitely.

In Figure 9, we introduce an example further explored in Sec-
tion 5, the avatar exhibit. We can see a simple system with three
user objects and two simple scenery objects (a grid and an ellipse
on the grid). For the purposes of this discussion, scenery objects
are always visible to all users of the system, i.e. every user holds a
replica of a base database which includes scenery objects.

The wireframed spheres surrounding the three users are their
auras, normally invisible. The two remote users are in each other’s
auras and so holds information about each other. The third user,
however, is not in the aura of the others, and therefore only needs to
replicate the base database containing the scenery objects. It does
not need to replicate the parts of the database that hold information
about the other two users.

In essence, we use the notion of aura to partition the database,
and the Aura Manager to track the database partitions.

The aura may be dynamic; for example, when a user enters a
crowded room, then it is likely that the user would wish to reduce

State information

Area of control

Object

AM

Master AM

Figure 1: (Aura manager hierarchy)

their visual aura to cut down on the amount of information they
need to be concerned with. This user notion maps directly to our
requirements at the communications level where we wish to reduce
the the degree of interaction to minimize the amount of consistency
that must be supported.

The aura may also be dynamically adjusted to adapt to a specific
environment. For example, if a user enters a room where the user
should communicate with everyone in the room, the user’s aura
can coincide with the spatial boundary of the actual room. In this
way, the auras of all users within the room will be aligned, and thus
shared the same communication group.

Although the basic mechanism of the aura manager is similar
to the MASSIVE approach, the resulting action is different. Since
our system model relies on a replicated database model, we use the
aura manager as a means to signal to the clients which parts of the
database need to be replicated.

To do this, we rely on the underlying use of communication
multicast groups. Parts of the replicated database are associated
with multicast groups. When a client is informed of an aura collision
it is passed a group identifier. The client then joins that group and
requests the current state of the objects associated with that group.
Once it has installed these objects in its copy of the replicated
database, it then monitors that multicast group to track updates to
that portion of the data base.

In the following sections we discuss the underlying group mech-
anism implemented in DIVE to support this model, and discuss in
further detail how the aura manager mechanism is implemented
using these light weight groups.

3 Light-weight groups in DIVE

DIVE has always used group communication based on multicast to
support distributed state. In the original DIVE system, the group
communication mechanism was based on Isis [5]. More recent
versions of DIVE have used an SRM based distribution package
[10], which implements a reliable multicast protocol using negative
acknowledgement[8]. However, in all previous work, the granular-

ity of the group has been large, eg a “world”. In the work reported
here, we have implemented a fine grained group mechanism that
we refer to as “light weight groups”.

3.1 Entities and groups

In DIVE, entities form the basic unit of information being addressed
and distributed. Entities are hierarchically structured as trees, where
worlds are roots,nodes contain structural information, and graphical
views and lights form leaves. An entity hierarchy (with a world as
root) defines a geometric space disjoint from other worlds. Worlds
are associated with named multicast groups; peers obtain group
addresses from a nameserver. Additionally, unnamed so called
light-weight multicast groups can be associated with any entity.
The two kinds of groups are, however, equal in the sense that they
are both implemented by IP multicast and both are associated with
entities.

The world group and the light-weight groups form a hierarchy
of groups, much in the same way as entities form trees. We say
that a group encloses an entity (or another group) if the group is
the closest group “above” the entity in the hierarchy. That is, the
first group that is encountered when going upwards in the entity
hierarchy. Messages sent to an entity are always sent over the
entity’s enclosing group.

In the case of light-weight groups, any peer joining a group of
an entity must also join the entity’s enclosing group. The reason for
this is that the entity hierarchy defines the context of an entity, so
that an entity is well-defined only in the presence of its ancestors.

Entity hierarchies are partially replicated among peers. That is,
peers may chose not to cache parts of the complete entity structure,
due to parts of the world scene being far away or contain complex
data. When the positions or surroundings change, non-cached enti-
ties can be requested by sending a request message. Here, we only
treat the case where light-weight groups define a fully replicated
sub-hierarchy. That is, a sub-hierarchy that is not replicated at all
peers must have an associated light-weight group.

wGw

c

Ga

CBA

a b

Gb

Figure 2: Partial replica of entity hierarchy as instantiated in one
peer.

Figure 2 shows an instantiation (a replica) of an entity hierarchy
as seen from one peer process P . The tree has a world w as root,
a; b; c are nodes, and A;B;C are sub-trees containing nodes and
leaves (possibly defining avatars). For the purpose of the example,
a and b can be considered to be users (actors); with their subs
defining their avatars. Actor a, resident in P , is represented by

an avatar given by A; b represents a remote actor resident in some
other peer Q with avatar B; and C represents pure world data. a
and b define light-weight groups with associated groups Ga and
Gb, respectively. Ga encloses A and Gw encloses a, b, c and C .
Messages to an entity in A are sent over Ga, messages to B are
sent over Gb, while messages to a, b, c, w and C are sent over Gw .
In the figure, the triangle containingB is dashed indicating that P
has not joined Gb and has no replica of B. 1

Note that messages sent to an entity with a light-weight group
are not sent over that group, but rather over the enclosing group.
In this way, entities with light-weight groups are dual: they can be
seen as members of two groups, the enclosing group and its own
light-weight group. Thus, entities with light-weight groups serve
as a “glue” between groups.

3.2 Dynamics of light-weight groups

When a peer joins the world group, it receives replicas of the world
data by state transfer from an already connected peer. However, only
the “stubs” of entity hierarchies enclosedby light-weight groups are
transferred initially. To fetch the group data, the light-weight group
is joined and the encloseddata is explicitly requestedover the group.
In Figure 2, processP has not joined Gb, and does not replicate B,
only the “stub” b. This is experienced by the fact that a can not see
b’s avatar, B.

wGw

Ga

A

a b

Gb

Figure 3: Moving a sub-structure A from one enclosing group to
another.

Prune and graft operations on the entity hierarchy can be made
easily even in the presenceof light-weight groups. If a sub-structure
is pruned from one part of a tree and grafted at another place,
the enclosing group is simply changed and the graft operation is
distributed to both groups involved. Figure 3 shows the example
of an object hierarchy A originally enclosed by Ga, but moved to
where it is enclosed byGb. The notification of the operation will be
distributed on both Ga and Gb, peers that have not joined Gb will
“drop” A while peers that have joined Gb but not Ga will request
(and make a replica of) A.

Note that the prune and graft operations are generalized to the
case of separate worlds.

1The example is a simplification for several reasons: in DIVE, actors and avatars
are different objects, and world data generally contains a large data set.

3.3 Exploiting light-weight groups

The light-weight group mechanism provides a basic service level
that can be exploited on an application and server basis. In the case
of the example in Figure 2, the decision and the actions to join Gb
and request b’s avatar, B, must be explicitly requested by P over
Gb.

The issue of what criterion to use when requesting data and
joining light-weight groups is not defined by the DIVE system.
Different semantics can therefore be deployed in accordance with
the preferred model. For example, peers can choose to base the
decision on visual range, so that all groups within the vicinity of an
avatar are joined. Another approach is to have a collision manager
that notifies the peers of mutual collisions.

The latter approach is taken in this paper, and we will in the
next section elaborate more on the details. In other work, such as
the default behaviour in the current DIVE system, our approach is
to use the visual range as a base for requesting entities. The DIVE
platform can seamlessly support any such model.

4 Avatars and light-weight groups

In this section, we discuss how the the light-weight group mecha-
nisms can be used to model the aura model introduced in Section 2.
To be concrete, we present one design alternative that will be used
in the remainder of the paper.

wGw

A

a

Ga

aura

b

c lod

Figure 4: Entity hierarchy describing the design of an avatar, lod
and light-weight group.

In the simplest form shown schematically in Figure 4, an actor
(a) has an avatar (A), a simple representation of the avatar (lod), an
aura (aura), and a light-weight group (Ga). Node b only acts as a
“grouping” node. The avatar is enclosed by the light-weight group
while the aura and lod is not. The simple movements of the actor
are performed on object b, so that the movements of the aura and
the lod is visible to every observer in world w. In contrast, motions
and operations within the avatar A are relayed over Ga and are not
visible to peers outside the group.

The 3D presentation of A, lod and aura are shown in Figure 9.
Three actors are shown: the left in low resolution (lod); the middle
in full resolution with its surrounding aura; and the right in full
resolution walking away from the booth. normally invisible. The
simple lod representation of the avatar is a block-based represen-
tation only visible at a distance. Therefore, the full resolution of
the avatar is not available to other actors until their auras intersect.

Additionally, the internal movements of the avatar, such as walking
movements, is only visible within the light-weight group.

Given this structure of actors, the task of the Aura Manager
is simply to track the auras of all actors, and to mutually notify
them when their auras intersect. Two actors being engaged in an
intersection mutually joins the light-weight group and requests the
full avatar of the other actor. Thus, after aura intersection, the
avatars of the actors are mutually visible.

The design in Figure 4 is used henceforth in this paper to model
actors, avatars and auras. However, this design has one flaw: the
simple actor movements are performed on b and are thus visible to
the world group Gw . As the number of users increases, the traffic
associated to these movements increases linearly. However, this
traffic consists only of periodic position and velocity updates of b,
which represent a low traffic in comparison with complex avatar
motion. In any case, even this linear complexity can be removed by
aura partitioning on a larger scale.

Another way to model the avatar is to enclose the complete
actor (including aura and lod) by the light-weight groupGa. In this
way, actors have no way of detecting other actors until their auras
intersect. Only the aura manager has knowledge of the existence
of all actor information. The problem with this approach is that a
user has no overview of other avatars. As they get close, they just
pop-up from nowhere.

We believe that the best approach is a combination of the two
designs, where filtered motion (say once per second) update the
lods that are only visible from a distance. In this way, a solution
that scales arbitrary well is achieved, and you have the ability to
have an overview of what other avatars are doing at a distance.

5 Application scenario: The avatar exhibition

BA

C D

Figure 5: The Avatar exhibition scenario: A, B, C and D are
exhibition booths, while the filled circles are visitors. Moving
visitors are depicted with an arrow.

The avatar exhibit scenario simulates an exhibition situation where
several users move between exhibit booths, where they form inter-
acting subgroups, as depicted in Figure 5. We claim that this sce-
nario is sufficiently general for a number of meeting applications
where a large group of users is involved in (partitioned) communi-
cation.

The users are modeled by actors in a set labeled A. Each
actor defines an aura, an avatar, a lod and a light-weight group as
defined previously in Section 4. Initially, the only object an actor
a has in its database, apart from the avatar and the background
information (the exhibit area) are the lods and auras of the other
actors. When a’s aura collides with the aura of another actor, the
aura manager notifies both actors. This results in a joining the light-
weight group of the other actor and requesting its (full resolution)
avatar. Symmetrically, the other actor joins the light-weight group
of a and requests a’s avatar.

Initially every actor randomly selects a booth to start from. It
stays at this booth during a time interval TB , and then moves to a
new (random) booth during a time intervalTM , and then repeats the
behaviour indefinitely. When moving, it moves at a constant speed
as a series of positional updates and the limbs of the actor moves in
quite complex actions mimicking human walking movements.

When visiting a booth, or when moving between them, an actor
will meet other actors and then join the light-weight groups of the
other actors.

The parameters of the scenario are the following:

� A - The set of actors - visitors at the exhibit.

� B - The set of booths.

� TM - The time it takes an actor to move between two booths.
Actors move with a constant speed, so TM varies depending
on the distance between booths.

� TB - The time an actor stays at a booth. In the experiments,
we let TB be a stochastic variable.

6 Experiments and measurements

The main issue of the study, is to see how the system scales as the
number of users increases. We would like to see the network traffic
remain “constant” or increase very slowly when the population
increases.

0

50

100

150

200

0 10 20 30 40 50 60

K
b
p
s

s

total
low resolution

Figure 6: Three “walking” intervals of high-resolution data at
100Kbps and low resolution data at 10Kbps of a sending peer.

Our model is based on the assumption that actors communicate
“locally” using a high-level of resolution, producing a high traffic
load. This “high-fidelity” channel consists of actual walking move-
ments animated using arms and legs. In the experiment, each peer
produces a peak-rate of such traffic at a rate of 100 kbit/s. The other
kind of traffic consists of “low-resolution” updates of positional and

velocity updates. Typically, peak rate of such traffic is 10 kbit/s.
See Figure 6 where the outgoing traffic of one participant has been
measured during five walking intervals: the time at the booths can
be seen as producing no outgoing traffic.

Our aim is to limit the high-resolution traffic to peers being in
the spatial proximity. We therefore emit high resolution traffic on
the light-weight groups associated with the auras, while the low-
resolution data is sent to all participating peers within the exhibition.

As the number of users increases, however, so does the number
of collisions between user auras. Therefore, we increase the number
of booths linearly as well to keep the probability of encounters (from
the viewpoint of each actor) at an approximately constant rate.

Loosely, the metric to measure is “network traffic”. However,
measuring the number of packets on the network depends on net-
work topology, routing algorithms, etc. Therefore we have chosen
to measure the number of incoming packets at each node and sum-
marizing these numbers for all participating peers, and dividing this
amount with jAj� 1. This amount is the mean incoming traffic per
peer. and should, in the case of no light-weight groups, be equal to
the sum of the sent traffic. When one global group is used, the mean
incoming traffic should be equal to the sum of all sent packets. How-
ever, with light-weight groups, it should be significantly less. The
closest measure of the sum of all sent packets (< jAj � 110Kbps),
increases linearly with the number of participants.

In the experiments, we use a large number of Sun and Sgi
computers connected by an heterogeneous LAN network (WAN
experiments are being conducted but the results are not a part of
this paper) with a minimum bandwidth of 10Mbps. The processes
run a slimmed version of Dive3.1.0 with 3D rendering turned off.

In our experiments we have chosen to varyN between 5, 10 and
20, and to set B to 3, 5 and 10, respectively. TM is approximately
10 seconds, and TB is a stochastic variables with an average of
3 seconds. The number of collisions between actors are typically
around 10 per actor and minute.

We also make a comparing study where all traffic is global,
that is, disabling the light-weight group mechanism. In effect,
this experiment was implemented by removing Ga from the avatar
definition in Figure 4. In this way, all traffic inA is relayed over the
world group, Gw . Since the peak rate is 110Kbpswe have limited
the number of peers in the global case to 10 so that we keep well
below any congestion effects on the network.

0

200

400

600

800

1000

0 5 10 15 20 25 30 35

K
b
p
s

s

5 visitors
10 visitors

Figure 7: Mean total incoming traffic per peer with no light-weight
groups for 5 and 10 peers.

6.1 The base case: no light-weight groups

In the first experiment, every peer receives all traffic from all peers.
In Figure 7 the mean traffic received by each participants is depicted
for the cases of 5 and 10 participants. The mean incoming rate is
470 Kbps for 5 participants and 643 Kbps for 10 participants.

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35

B
W
[
K
b
p
s
]

T[s]

Light-weight groups

5 users
10 users
20 users

Figure 8: Mean total incoming traffic per peer with light-weight
groups for 5, 10 and 20 peers.

6.2 Light-weight groups

In the second experiment, a participant receives high-resolution
traffic only from those avatars whose auras intersect with the par-
ticipants own aura. In Figure 8 the mean traffic received by each
participants is depicted for the cases of 5, 10 and 20 participants.
The mean incoming rate is 87 Kbps for 5 participants, 235 Kbps for
10 participants, and 342 Kbps for 20 participants.

6.3 Observations and discussion

In the case of the light-weight groups note that the lower limit of
low resolution traffic is 10 � jAj, that is 50; 100 and 200 Kbps. The
traffic above this limit corresponds to high resolution traffic.

The receiving rate is less than the theoretical in the case when
there is a lot of incoming traffic, for example, the experiments with
10 participants in Figure 8. We have identified the main reason
for this behaviour to be the increased CPU load which is especially
true for some of the low-end workstations used in the experiments
(such as Sun sparcstation 1). This leads to (1) a decreased sending
rate (2) packet loss in the receiving hosts input buffers, and thus an
overall decrease in traffic.

In the experiments, we have not considered “state transfer”
between peers, that is, the transfer of the initial state description
between participants. Instead, each peer has a replica of every
actor’s full avatar a priori. However, in a real scenario, when a new
avatar is first encountered, its state (graphical representation, etc)
will have to be transferred which leads to a momentary peak of traffic
corresponding to the size of the avatar description. This would lead
to momentary peaks of traffic, not shown in the experiments.

7 Related work

There are several other projects that are looking at the issues of
distributed VE’s. For our purposes these can be classified into
two types. The first type are those systems that are concentrating

on supporting sophisticated group interaction models suitable for
such work as CSCW. Such systems are characterized by interaction
sessions in which participants act as both a source and a sink for
updates. In addition, such systems tend to have stricter consistency
requirements often involving locking or conflict resolution. The
second class of systems are those that are interested in large scale
distributed simulations where the main focus is on simple state
update outside of any complicated interactions. Participants in
these systems tend to act as sources of state updates. Although this
is a false dichotomy in that there is a certain degree of overlap in
any system, it allows us to usefully contrast approaches to sharing.

7.1 CSCW oriented systems

DIVE [10] is a sophisticated distributed VE developed at SICS and
used for a number of CSCW projects [4]. The original work on
spatial-based interaction models was carried out using DIVE.

There are several other distributed VE’s that attempt to pro-
vide a framework for CSCW, including MR[20], Bricknet[21] and
VEOS[6]. Four systems of note, because they implement some
varient of a spatial interaction model are MASSIVE, CyberPas-
sage, Aviary and Spline.

MASSIVE[9] has been designed to support shared conferencing
in a 3D environment. MASSIVE only supports consistency on
user objects, all other data, e.g. the world scene, is regarded as
static background information. The MASSIVE system also uses the
notion of auras but uses it to implement a spatial model rather than
as we do, to define communication groups. In addition, MASSIVE
does not use a group based communication model but relies on point
to point links.

Aviary[23] although more concerned with immersive VR type
applications and tightly coupled distributed platforms has a number
of similar techniques to our system. In particular the use of the
Environment Database (EDB) to manage collision detection and
their model for splitting the EDB when loads are high is identical.
However, Aviary has limited support for replication and uses a point
to point communication model.

Spline [3] uses locales as a means to partition a virtual world.
Communication within each locale is performed on separate mul-
ticast addresses. Each locale has explicit bordering information,
defining how a locale relates to other locales and how a user can go
from one to the next. A user listens to several locales simultane-
ously: the present and its neighbors.

The CyberPassage system[11] uses many of the ideas discussed
in this paper. In particular, CyberPassage exploits the aura model
for spatial partitioning. Since CyberPassage has been built from
scratch to work with low cost PC machines and low bandwidth
links, it implements a hybrid architecture that incorporates aspects
of the client-server and the peer to peer model. In essence, the
rendering machines (the home PC) is connected to a world server in
a traditional client-server manner. However, the server is replicated
in a peer to peer manner and uses some of the same low level
mechanisms for group communication as those used by DIVE.

7.2 Distributed simulation platforms

NPSNET[15] is an example of the second class and one which has
explored many of the issue of large scale interaction. Due to the
target application set, distributed battlefield simulation, NPSNET
has concentrated on different issue from our work. In particular,
their main concern with respect to consistency is position updates
of battlefield units.

NPSNET initially used “in-house” communication protocols,
experimented with SIMNET[18] and finally adopted DIS[1]. In all

cases, the underlying communication mechanism is a best effort
broadcast with minimal consistency support. DIS includes sup-
port for position prediction algorithms, often referred to as dead
reckoning[22] which offers a degree of consistency by predicting
positional information based on movement physics.

Recent work by the NPSNET group has focussed on using mul-
ticast to address the scaling issue of the original broadcast approach
of DIS[16] but again have taken a best effort approach to consis-
tency. In the paper cited above, the authors discuss a possible Area
of interest manager (AOIM) and propose a geographic approach to
spatial partitioning mapping multicast groups hexagonal geograph-
ical regions. In simulation, using previous battlefield simulation
data, they postulate that their approach will scale well.

7.3 Related work on the aura model

The aura based spatial model has been explored, to a certain degree,
in earlier versions of DIVE [4, 10]. However, the notion of aura was
treated orthogonally to the underlying database and used exclusively
at higher levels to support interaction between users. In many cases,
particularly those worlds that represent a large spatial area, such as
a city, it is not necessary for a participant in one location to be
consistent with another participant four blocks away. In that case,
maintaining consistency at such a large granularity forces a high
degree of false sharing [17].

MASSIVE has a different model of sharing to DIVE. MASSIVE
only shares user information and does so through typed bidirectional
links. MASSIVE explicitly tracks users and informs them of aura
intersections. In this way, MASSIVE has a more explicit control
over the communication links between users, but restricts itself to
simply making communication endpoints available. There is no
shared database as in the DIVE system.

The locales model in SPline [3] has many similarities with the
light-weight group mechanisms described in this paper, specifically
in how to bind multicast groups to object hierarchies. But the scope
of locales is the same as spatial regions in NPSNET, although they
are more flexible since any geometrical region can define a locale.

Our use of groups and multicast can be usefully contrasted with
MASSIVE, SPLINE and NPSNET which have proposed mapping
groups not to dynamic sets of related objects, but to spatial areas.
NPSNET for example envisages using octagonal regions and as-
signing a multicast group to each region. Participants that enter a
particular spatial area will join the associated group and receive all
broadcasts to that group. The main drawback of this approach is
that it suffers from both the scaling problem and the false sharing
problem. In terms of scale, unless mechanisms exist for dynamic
remapping of multicast groups to geographical areas, heavily used
areas have no mechanism to reduce communication costs. In terms
of false sharing, in a similar way to the original DIVE system, all
participants in a geographical zone must participate in all consis-
tency decisions.

MASSIVE uses the same model of aura as we do, even to a
greater extent. However, the use of the spatial model has been
used to drive point to point links rather than group protocols. The
authors of the MASSIVE system imply that they will adopt multicast
support in a similar manner to NPSNET, i.e. at a geographical
level [9]. As such our comments on NPSNET apply equally here.

In contrast we have adopted an object centric approach to multi-
cast groups based on a spatial aura and allow these auras to grow and
contract according to application needs. In addition, our commu-
nication group model supports partial replication allowing further
control over the false sharing problem (see Section 3.1).

Our goal in the work reported here was to use the notion of
aura to drive the underlying replication mechanisms in a way that

allowed us to keep the rich model of a fully replicated database, but
without having to maintain total consistency between all replicas at
all times.

8 Conclusions

As discussed in the introduction, the success of distributed VE’s
for widespread use rests on their ability to provide acceptable per-
formance. Apart from graphics performance, the most significant
cost in any distributed VE is the communication costs of ensuring
that participants have a defined degree of consistency with respect
the shared scene. The cost of maintaining consistency depends on
two factors, the number of participants in the consistency decision,
and the degree of consistency. In this paper we have attacked the
first factor. We have shown how we have used a spatial model
to decrease the number of participants in any consistency decision
which is based on the notion of an aura or spatial area of inter-
est. Further, we have shown how this spatial model can be used
to drive a fine grained group communication mechanism allowing
us to exploit multicast communication to further reduce message
traffic. To support our claims for increased performance through
reduced message traffic we have implemented a simple shared ex-
hibition application and measured message traffic with and without
the use of the spatial model. Our results show a dramatic decrease
in message traffic arriving at a node.

The hypothesis of the experiments are based on the fact that mul-
ticast is “correctly” implemented in routers and computer network
interfaces: First, the network interface must be able to handle the
filtering of incoming multicast addresses in hardware. Otherwise,
the protocol handling software will be forced to filter all multicast
messages appearing on the LAN in software. Second, the multicast
routing algorithms must be able to refrain from forwarding mes-
sages to networks where no member of that group exist. Both of
these features must exist in order to benefit fully from the multicast
results described. It is even more important in the WAN case, but
as the Internet Mbone is deployed with multicast routers, we hope
that more extensive use of multicast in the way described in this
paper can lead to substantial performance benefits.

References

[1] DIS ANSI/IEEE std 1278-1993. Standard for information technology,
Protocols for distributed interactive simulation. March 1993

[2] K. Arthur, K. Booth and C. Ware. Evaluating 3D task performance
for fish tank virtual worlds. In ACM trans on distributed systems,
11(3):239-265 1993.

[3] J. Barrus, R. Waters and D. Anderson, "Locales: Supporting Large
Multiuser Virtual Environments" IEEE Computer Graphics and Appli-
cations 16(6), Nov, 1996

[4] S. Benford, L. Fahlen, C. Greenhalge and J. Bowers. Managing mutual
awareness in collaborative virtual environments. Proc. ACM SIGCHI
conference on Virtual reality and technology (VRST’94) August 23-
26th 1994, Singapore, ACM Press.

[5] K. Birman, A. Schiper and P. Stephenson. Lightweight causal and
atomic group multicast. In ACM transactions on Computer Systems
9(3), 272-314. 1991

[6] W. Bricken and G. Coco. The VEOS project Presence. Vol. 3 No. 2.
Spring 1994. pp. 111-129. MIT Press.

[7] J. Carter, J. Bennet and W. Zwaenepoel. Implementation and per-
formance of Munin. Procs. of 13th Symposium on operating system
principles (SOSP). Oct 1991 pp 152-164. ACM press.

[8] S. Floyd, V. Jacobson, C-G Liu, S. McCanne and L. Zhang, "Reliable
Multicast Framework for Light-weight Sessions and Application Level
Framing" Proceedings from SIGCOMM’95, Boston, MA, Sept, 1995

[9] C. Greenhalge and S. Benford. MASSIVE: a distributed virtual reality
system incorporating spatial trading. Procs of the 15th ICDCS. May 30
- June 2, Vancouver Canada 1995. IEEE press.

[10] O. Hagsand. DIVE - A platform for Multi-User Virtual Environments.
IEEE Multimedia Vol. 3. No. 1 1996 pp. 30-39

[11] Y. Honda, K. Matsuda, J. Rekimoto and R. Lea. Virtual soci-
ety. Procs. of VRML’95, San Diego. USA. Dec. 1995 Available at:
http://www.csl.sony.co.jp/project/VS/VRML95.ps.Z

[12] P. Hutto and M. Ahamad. Slow memory: Weakening consistency to
enhance concurrencyin distributed shared memories. Procs. of the 10th
ICDCS. pp. 302-311 May 1990 IEEE press.

[13] R. Lea and Y. Yokote. Adaptive operating system design using reflec-
tion. Procs. of the 5th Workshop on Hot Topics in Operating Systems
(HTOS-V). Orcas Island Washington, USA.1995. pp. 95-101. IEEE
press.

[14] R. Lea, P.G. Raverdy, Y. Honda, and K. Matsuda. Issues in the design
of a large scale VE. Sony Computer Science Lab Tech Report 95
available from http://www.csl.sony.co.jp/

[15] M. Macedonia, Pratt, D. and Zyda, M. NPSNET: A network software
architecture for large scale virtual environments. Presence. Vol. 3 No.
4. Fall 1994. pp. 265-287. MIT Press.

[16] Macedonia, M., Zyda, M., Pratt, D., Brutzman, D. and Barham, P.
Exploiting reality with multicast groups. IEEE Computer Graphics,
Vol.15 No.5 pp. 38-45. September 1995. IEEE press.

[17] Mosberger, D. Memory consistency models Operating Systems Re-
view Vol. 27. No. 1 pp. 18-26. ACM press.

[18] Pope, A, The SIMNET network and protocols. BBN report no. 7102.
BBN systems and technologies, Cambridge, MA. USA. 1989.

[19] Pu, C. Relaxing the limitations of serializable transactions in dis-
tributed systems. Proceedings of the 5th ACM European Workshop, Le
Mont St Michel, France. Operating Systems Review Vol. 27. No. 2 pp.
66-71. ACM press.

[20] Shaw, C., Green. M., Liang, J. and Sun, Y. Decoupled simulation in
virtual reality with the MR toolkit. ACM trans. on Information Systems.
11(3), pp. 287-317.

[21] Singh, G., Serra, L., Png, W. and Ng H. Bricknet: A software toolkit
for networked virtual worlds. Presence. Vol. 3 No. 1. Winter 1994. pp.
19-34. MIT Press.

[22] Singhal, S. and Cheriton, D. Exploiting position history for efficient
remote rendering in networked virtual reality. Presence. Vol. 4 No. 2.
Spring 1995. pp. 169-193. MIT Press.

[23] Snowdon, D. and West, A. AVIARY: Design issues for future large
scale virtual environments. Presence. Vol. 3 No. 4 Fall 1994. pp. 288-
308. MIT press.

Figure 9: Three users with auras on a grid around a booth.

